Science Stories: Adventures in Bay-Delta Data

rss
Getting out of the Weeds
  • June 28, 2023

Blog by Rosemary Hartman, Data collated by Nick Rasmussen

Our last post gave you an introduction to the water weeds of the Delta. Invasive submerged aquatic vegetation is taking over the waterways, making it difficult for boaters, fish, water project operations, and scientific researchers (Khanna et al. 2019). As we described in the blog “Getting into the weeds”, they are hard to control too. But how do we collect data on aquatic weeds and what do those data look like?

How do we collect data?

There are two main types of data that we can work with (see IEP Technical Report 92 (PDF) for details). The first, is collected with areal photographs, and is known as ‘remote sensing’ (Figure 1). A specialized camera (sensor) is mounted on a platform (a drone, airplane, or satellite), and it can collect a regular-old photograph, or a hyperspectral photograph that records a lot of wavelengths of light that our eyes can’t see. Because different types of plants reflect different spectra of light (they are different colors) these photographs can be used to map location and extent of vegetation (Figure 2).

Diagram of remote sensing process showing an airplane flying over the water. Lines representing light go from the sun to the ground and are reflected to the sensor on the plane.
Figure 1. Diagram showing how remote sensing works. Light from the sun is reflected by objects on the ground. Different wavelengths of light are reflected differently. The sensor (camera) on the platform (airplane, satellite, drone, etc) registers the different wavelengths and stores them as an image file. Later, experts can classify the images based on which wavelengths of light were reflected.

The UC Davis Center for Spatial Technologies and Remote Sensing (CSTARS) has been mapping vegetation in the Delta using hyperspectral imagery collected with airplanes for most of the last 20 years (like the map in Figure 2). They create maps every year and share their data online via the Knowledge Network for Biocomplexity.

False-color map of Suisun Marsh showing different colors for different types of vegetation.
Figure 2. Hyperspectral image map of Suisun Marsh collected by CSTARS. Colors are used to represent different vegetation types (they aren't really that color).

Hyperspectral imagery is very good for identifying floating aquatic vegetation and terrestrial vegetation, but the water makes it hard to identify submersed vegetation. We can map where submersed vegetation is, but not what kind of vegetation is there. To look at community composition, we need to actually get out in the field and check on the weeds directly. To survey submersed weeds, researchers use a thatch rake (Figure 3) – an evil looking tool with sharp tines on one end and a long handle.

Image of a rake with a long pole and very jagged blades on the end.
Figure 3. A thatch rake being used to sample aquatic vegetation. Photo from the Department of Water Resources.

To measure weeds, researchers either lower the rake into the water and twist it around to pick up the weeds, or they drag the rake behind the boat. When they pull the rake in, they rank the coverage of weeds on the rake head and identify the weeds to species. Several different groups have been collecting these data over the past twenty years– the State Parks Division of Boating and Waterways (DBW), UC Davis (including CSTARS), SePRO Corporation, and the Department of Water Resources. Dr. Nick Rasmussen (DWR) recently integrated all these datasets into one data publication available on the Environmental Data Initiative. He developed the data set because he was helping to write a series of reports about the environmental impact of drought and drought-related management actions. Those reports required rounding up aquatic vegetation data quickly, but at the time, virtually none of it was readily available. He wanted to fix that.

It ended up being a fun challenge for Nick because he got to learn how to create a fully reproducible process for integrating the dataset – including some hard decisions about how best to combine data that was collected in very different ways. He did all the cleaning and formatting in R scripts that are made available in a public GitHub repository.

What do the data look like?

Well, because these data were collected by different programs for different purposes, there are pretty big differences in number of samples and distribution of samples over the years (Figure 4). So it’s a little difficult to detect trends.

Bar graph showing lots of samples taken from 2007-2010, no samples taken 2011-2013, and a lower number of samples taken 2014-2021. The Franks Tract Survey only occurred from 2014-2021.
Figure 4. Graph of number of submerged vegetation rake samples per year in the integrated vegetation dataset.

However, when we look at the relative abundance of different species that have shown up in the rake sample data (Figure 5), we can really see an expansion in Potamogeton richardsonii (Richardson’s pondweed, black bars in figure 5) and Najas guadalupensis (southern naiad, brown bars in figure 5) after 2014. It’s not clear whether these species, both native to California, were recent invaders in the Delta or whether early surveys didn’t know how to tell the difference between them and similar looking species such as Potamogeton crispus (curlyleaf pondweed, red bars in Figure 5).

Bar plot showing relatively consistent communities of vegetation over time, except for increases in Potamogeton richardsonii and Najas guadalupensis after 2014. The enlarged image shows the stacked bar plots for each species.
Figure5. Graph of relative abundance of each species across all rake sample surveys by year. No sampling occurred 2011-2013. Click for a version that shows separate plots for each species.

To make the story a little more complicated, these species aren’t found evenly throughout the Delta. Both Potamogeton richardsonii and Najas guadalupensis are found chiefly in Franks Tract (Figure 6) and not in any of the other regions of the Delta. SePRO and DBW conduct extensive sampling every year within Franks Tract (see Caudill et al. 2019 (PDF)), but not as high an intensity in other areas, so high abundance there throws off the Delta-wide data if it is not weighted by location.

Map with pie charts in each region showing relative abundance of vegetation across all years. Most pie charts show mostly Egeria and Ceratophyllum, but Franks Tract also has Potamogeton richardsonii and Najas guadalupensis. The enlarged image shows the stacked plots for each species.
Figure 6. Average relative abundance of different types of submerged vegetation by region of the Delta for the entire dataset. Click for a version that shows separate plots for each species.

We can also look at the hyperspectral maps to give us a record of total coverage of submerged weeds by year (Figure 7). We can see that total coverage of weeds really increased between 2008 and 2017, then remained about the same from 2017 to 2022.

Bar graph showing coverage of vegetation across all Delta waterways. Coverage is about 15% from 2007-2020, then jumps to 18-25% between 2017 and 2022.
Figure 7. Graph of percent of waterways in the Delta covered with submerged vegetation by year. Triangles indicate missing years.

However, it is often more interesting to look at a smaller area of the Delta and see how vegetation shifts from year to year (Figure 8, 9). For example, distribution of weeds in Franks Tract – a large, open-water area of the Delta – changed dramatically when a barrier was installed in West False River in 2015 and 2021-2022. The open-water area in the middle of the tract filled in during 2015, but the area on the eastern side of the tract started to clear out during 2021-2022 (see Hartman et al, 2022 (PDF) for more information).

Map showing the location of the Delta in the central valley of California and Franks Tract in the center of the Delta.
Figure 8. Map showing the location of Franks Tract - a large, open-water area with extensive vegetation and the site of many vegetation surveys by DBW and SePRO. Maps of vegetation in Franks Tract through the years are in Figure 9, below.

Maps of Franks Tract for 2004-2008 and 2014-2022 showing shifts in vegetation over time.
Figure 9. Hyperspectral image of Franks Tract showing installations of a barrier in West False River during 2015, 2021, and 2022, and resulting changes in distribution of submerged aquatic vegetation. Click to enlarge.

Between all these surveys, we’ve collected a lot of data on weeds, but we haven’t done an extensive analysis. There are lots more questions waiting to be asked! How does the distribution of weeds change with floods and droughts? Which species of weeds grow in shallow versus deep water? Are any species expanding in range? Download the dataset yourself and take a look!

Further reading

Categories: General, Underappreciated data


Comments are closed.