Science Stories: Adventures in Bay-Delta Data

Zooplankton: Not just for [fish] breakfast anymore!
  • December 30, 2021

Lots of Interagency Ecological Program (IEP) scientists research fish. Of the 22 surveys in IEP's Research Fleet, 17 are primarily focused on fish. But fish in the San Francisco Estuary are hard to catch these days. Over the past thirty years, Delta Smelt, Longfin Smelt, and even the notoriously hardy Striped Bass have declined precipitously (CDFW FMWT data). To figure out how to reverse these declines, we need an understanding of the “bottom-up” processes that exert control on these populations—we need to study fish food. Therefore, we need to increase our understanding of what pelagic fish eat: zooplankton.

Magnifying glass with cartoon images of several zooplankters

If you’ve spent any time around fish people, you’ve probably heard the word “zooplankton”, but you might not really know what it means. Zooplankton are small animals that live in open water and cannot actively swim against the current (“plankton” means “floating” in Greek). They include crustaceans (copepods, water fleas, larval crabs, etc.), jellyfish, rotifers, and larval fish. Most of them are hard to see without a microscope, so they are easy to overlook – but you’d miss them if they weren’t there because most of your favorite fish rely on zooplankton for food.

Fortunately, the IEP Zooplankton Project Work Team has been tackling the problem head-on. The group got started when Louise Conrad and Rosemary Hartman were both collecting zooplankton samples near the same restoration site. They thought “We’d be able to say a lot more about the restoration site if we combined our data sets!” But with samples collected using different gear and identified by different taxonomists, it proved more difficult than they originally thought. They needed a team of experts to help them figure out how to deal with the differences in their data. So the Zooplankton Synthesis Team was born! The original team included Karen Kayfetz, Madison Thomas, April Hennessy, Christina Burdi, Sam Bashevkin, Trishelle Tempel, and Arthur Barros, but soon grew as more people heard about the discussions they were having.

The team started by identifying the major zooplankton datasets that IEP collects and dealing with tricky data integration questions:

  • Can you integrate data sets when the critters were collected with different mesh sizes?
  • What do you do when one data set identifies the organisms to genus and another one identifies down to species?
  • What if these levels of identification change over time?
  • Does preservation method impact the dataset?

diagram of three data sets being put into a machine and turning into one data set

To integrate data sets, the team standardized variable names, standardized taxon names, and summarized taxa based on their lowest common level of resolution.

While working through these sticky questions, they compiled what they learned about the individual zooplankton surveys into a technical report (PDF) describing each survey and how they are similar and different. They published a data package integrating five different surveys into a single dataset and Sam put together a fantastic web application that allows users to filter and download the data with a click of a button.

The team had put together the data, but there was more work to do. They realized they needed to do more if they wanted people to use their data. Lots of data on zooplankton get collected, but few research articles are published about zooplankton, and zooplankton data are rarely used to inform management decisions. To get the broader scientific community excited about zooplankton in the estuary, the ZoopSynth team worked with the Delta Science Program to host a Zooplankton Ecology Symposium with zooplankton researchers from across the estuary and across the country (you can watch the Symposium recording on YouTube.). From this symposium they learned a few important lessons to help increase communication and visibility of zooplankton data and research:

  • Managers and scientists should work together to develop clear goals and objectives for management actions. Is there a threshold of zooplankton biomass or abundance to achieve? Or is the goal simply higher biomass of certain taxa? This will make it easier to design a study that provides management-relevant results.
  • Scientists should understand the management goals and keep the end goal in mind. If the end goal is fish food, study taxa that are most common in fish diets. If the primary interest is contaminant effects, focus on sensitive species.
  • We need to start using new tools like automated imagery and DNA along with traditional microscopy to collect better data faster.
  • We need to maximize the accessibility of zooplankton data to scientists and managers. Scientists should share data in publicly available places in easy-to-read formats. Similarly, managers should share lessons learned from management actions widely, and use them for adaptive management. Both scientists and managers should be encouraged to ask questions of each other to ensure both understand the best uses for zooplankton data.

These lessons, (and more!) are summarized in a recent essay published in San Francisco Estuary and Watershed Sciences. If that’s too much reading, the team also produced some fact sheets summarizing the major take-home messages of the essay and the symposium:

The team has expanded into an official IEP Project Work Team that meets monthly to discuss new zooplankton research ideas, share analyses, look at cool pictures of bugs, and talk about trends. If you’re interested in joining, contact Sam at

diagram of organism giving presentation

Categories: BlogDataScience, General

Comments are closed.