Science Stories: Adventures in Bay-Delta Data

rss
  • June 15, 2023

By Shruti Khanna and Rosemary Hartman

CSTARS field crew member sampling submerged aquatic vegetation using a thatching rake in the southern edge of Little Frank's Tract. Azolla and water primrose in the background, Egeria densa on the rake.
Figure 1. The hard-working staff of the UC Davis Center for Spatial Technologies and Remote Sensing survey water weeds using large thatch rakes. Image credit: UC Davis.

If you’ve ever tried to take a boat across one of the large, flooded islands in the Delta, there is a good chance you’ve gotten your propeller snagged on water weeds. Submersed aquatic vegetation (which is the fancy, scientific term for ‘water weeds’) have been getting worse and worse in recent years, with invasive species taking over areas that were previously open water. Most of these weeds are introduced species from South America, but even some of our native species have been expanding rapidly. Weeds were the subject of several papers in the most recent State of Bay Delta Science, they were the subject of a recent paper synthesizing many years of herbicide data to look at weed control effectiveness at a landscape scale, and data on aquatic weeds in the Delta has been published in several different datasets. Classification maps are now available for all aquatic plants in the Delta for most of 2004-2022 (with 2023 in the works) and there is a new, integrated dataset made up of vegetation samples from four different programs. Together, these data and publications are increasing our understanding of where weeds are a problem and what to do about it.

The recent paper “Multi-year landscape-scale efficacy of fluridone treatment of invasive submerged aquatic vegetation in the Sacramento San Joaquin Delta”, published earlier this year in Biological Invasions, was an excellent example of how many datasets could be integrated and used to answer a major management question. Water weeds have been managed with herbicides by California State Parks Division of Boating and Waterways for years, but its always seemed like a Sisyphean affair – constant use of herbicides and mechanical removal while weeds just keep growing back (for more info, see recent special issue of the Journal of Aquatic Plant Management). This gave lead author Dr. Shruti Khanna the idea that someone should look at whether the treatments were working. So she enlisted the help of Dr. Jereme Gaeta – statistician extraordinaire, Dr. Edward Gross – an expert in hydrodynamic modeling, and Dr. Louise Conrad – who could provide both scientific and policy advice.

For Shruti, the best part was working with the other members of the team: “Honestly, what I enjoyed most was working with Jereme on this project. He brought methods of analysis to the table that I couldn't have dreamed of when I was doing my PhD. I just didn't have the know-how. So, it was a very complementary effort - my remote sensing and geospatial skills to extract spatial information and integrate it with diverse other datasets, his statistical skills to create a nuanced GAM model to explore the data, and Louise's expert knowledge on the treatment program, its history, and management perspective made the publication a lot stronger. It was Jereme's idea to add Ed's hydrodynamic modeling of water speed to our analysis. Incorporating speed gave a whole new perspective to our study and turned out to be critical to understanding why treatment is sometimes not effective."

They gathered data gathered in the field on when and where weeds were treated, annual maps of weed distribution collected with hyperspectral imagery, and predicted current speed based on hydrodynamic models. The final integrated dataset was made of five diverse datasets with field data tables, rasters, vectors, and model output. They then created a statistical model to see whether multiple years of herbicide treatment resulted in lower probability of weeds. They found that when high levels of herbicide were applied there was a lower probability of weeds being there, but only at low current speeds (See figure 2). If the water was moving quickly, all the herbicide would be washed away and there was no effect of treatment (See figure 3).

Graph showing how the probability of vegetation presence decreases with increasing current speed. However, effectiveness of fluridone treatment also decreases with increasing current speed. Figure 2. Graph of model results from Khanna et al. 2023 showing probability of vegetation presence versus current speed. At low current speeds, fluridone decreased the probability of vegetation being present. But at high current speeds, there was no effect of fluridone. Graph reproduced from Khanna et al. 2023, with permission of the authors.

In a complicated, tidal system like the Delta, it is extremely difficult to control weeds when the herbicides get washed away by the tides more often than not. New tools are currently under investigation by members of the Delta Region Areawide Aquatic Weed Project, including the Division of Boating and Waterways, US Department of Agriculture, UC Davis, and others to get a better handle on this sticky problem.

Conceptual diagram showing how fluridone pellets sit on the bottom of the water. At low current speeds, water sloshes back and forth by the fluridone stays in place. At high current speeds, the fluridone washes away. Figure 3. Diagram of what is going on at herbicide treatment spots in the Delta. Fluridone comes in pellets which slowly release into the water column. When current speeds are low, water ‘sloshes’ back and forth a bit, but fluridone concentration remains high and weeds are killed. When current speeds are high, all the fluridone washes away before it can be effective. Image credit: Shruti Khanna, CDFW.

References

Categories: General
  • April 7, 2023

Blog by Rosemary Hartman, Data by Tiffany Brown, Sarah Perry, and Vivian Klotz. Photos from BSA submitted to DWR.

The base of the estuarine food web is phytoplankton – microscopic, floating, single-celled organisms drifting on the currents (“phyto” meaning “plant” and “plankton” meaning “drifter"). Most people know that trees produce oxygen, but phytoplankton put them to shame. Phytoplankton in rivers, lakes, and oceans worldwide produce an estimated 80% of the world’s supply of oxygen. Phytoplankton are also the base of the aquatic food web – providing food for zooplankton, other invertebrates, and fish. They are also the source of the omega-3 fatty acids that make seafood so good for you!

The Environmental Monitoring Program, a collaborative team of scientists and technicians from DWR, USBR, and CDFW, have been collecting phytoplankton samples to monitor the status and trends of phytoplankton in the San Francisco Estuary for the past forty years, and just recently made their data from 2008-2021 available online!

How are the data collected?

  • The monitoring program crew go out on DWR’s premier research vessel, the Sentinel, once per month and visit 24 fixed stations and 2-4 ‘floating’ stations across San Pablo Bay, Suisun Bay, and the Delta.
  • At each station, scientists collect a 60 mL water sample from 1 meter depth and stain it with Lugol’s iodine solution to make the phytoplankton easier to see.
  • The samples are shipped to a lab where highly-trained taxonomists identify and count the phytoplankton under high-powered microscopes.

What do the data look like?

For each sample, we see the count (number of cells) for each type of plankton as well as the size (biovolume) of these cells.

  • Each phytoplankter is identified to genus or species, but we often lump them into larger taxonomic groups to make it easier to see trends in the data. These groups are based on genetic and morphologic similarity, so they have similar shapes, pigments, motility, etc. Our understanding of the microbial tree of life is constantly evolving, so it is vital that we keep our entire data set up to date on the latest science as we categorize these groups.
  • The phytoplankton samples are collected at the same time as water quality, nutrients, and zooplankton samples, so you can put all the data together if you want to see the bigger picture.

What trends do we see?

  • There was a big change in average biovolume and relative abundance of cyanobacteria in 2014 when we switched contracting laboratories. Differences in methods made a big difference in the data, and we’re still trying to work out the consequences (See Figure 1 and Figure 2).
Bar plot showing annual average phytoplankton biovolume by taxonomic group.
Figure 1. Biovolume of each algal taxonomic group by year. Centric diatoms and pennate diatoms make up most of biovolume in every year, but differences in contractors in 2014 means we can't compare to earlier years. Click to enlarge.
Relative abundance of each algal group by year. 2012 and 2018 had a lot of centric diatoms, 2016-2018 had the most chrysophytes, and 2021 had particularly high percentage of centric diatoms.
Figure 2. Relative abundance of biovolume of each algal taxonomic group by year. Click to enlarge.
  • We always catch more critters in the spring and summer, when days are long and temperatures are warm (Figure 3, Figure 4).
Bar graph with average biovolume per month color-coded by algal group. The highest biovolume is Feb-April.
Figure 3. Average Biovolume of major algal taxonomic groups by month (data from 2014-2021 only, to control for changes in contractors). Click to enlarge.
Bar graph of organisms per mL by month, color-coded by algal group. All months are totally dominated by cyanobacteria (>80%).
Figure 4. Average concentration (organisms per mL) of major algal taxonomic groups by month (data from 2014-2021 only, to control for changes in contractors). Click to enlarge.
  • Cyanobacteria are very small in comparison to other phytoplankton, so even when we catch a lot of them we don’t get much biovolume. Looking at the graphs, Figure 3 shows the biovolume of each phytoplankton group in each sample while Figure 4 shows the number of organisms in each group in each sample. The cyanobacteria are hard to see in the biovolume graph, but they totally dominate the number-of-organisms graph!
  • Environmental factors frequently impact abundance of phytoplankton. For example, if we plot the abundance of each group versus net freshwater flow coming through the Delta, we find higher concentrations of most groups during months with higher flow (Figure 5).
Set of nine scatter plots showing relationship between algal concentration and Delta Outflow for each major algal group. All taxa have position relationships, but some are steeper than others.
Figure 5. Relationship between monthly mean concentration (organisms per mL) of each algal taxonomic group and net Delta outflow. Click to enlarge.

There are lots more questions we could ask with this dataset. Are certain taxa more common in wet years or dry years? Do certain taxa occur more frequently in salty water or fresh water? How have abundances of certain taxa changed over time? With a dataset like this, the sky is the limit! If you see anything interesting in the data, we encourage you to join the Water Quality and Phytoplankton Project Work Team to share what you see!

What’s your favorite phytoplankton? These are some of the most common taxa in our samples:

  • Cyanobacteria - Bacteria that photosynthesize! Some can even fix nitrogen out of the atmosphere. Others can produce toxins harmful to fish and wildlife, but most are harmless.
    Anabaena - a cyanobacterium that looks like a string of beads with one large bead on it.
  • Centric Diatoms - Big critters that look like wagon wheels and have a case (also called a ‘test’) made of glass-like silica. Considered very tasty and nutritious for zooplankton.
    Diatom in the genus Stephanodiscus. It looks like a small cylinder.
  • Pennate Diatoms - Closely related to centric diatoms, these guys also have a silica shell and are highly nutritious. Unlike centric diatoms, they are shaped like canoes and frequently live on surfaces instead of being part of the plankton.
    Diatom Asterionella sp. It looks like rods connected at one end.
  • Green Algae - Green cells that can be single or colonial and also have some flagellated species. They are also the distant ancestors of land plants.
    Green algae in the genus Cosmarium. It is round with some symmetric blobs inside.
  • Cryptophytes - Single-celled algae with a pocket in one end with two flagella sticking out of it.
    Algae in the genus Cryptomonas. They look like ovals with bits of dirt coming out of one end.
  • Euglenoids - Single cells with a flagellum that are frequently heterotrophic – they can eat other cells or photosynthesize to produce energy.
    Phytoplankton in the genus Euglena. It looks like an oval that is pinched on either end.
  • Crysophytes - Also known as “golden algae”, these guys have two flagella and many are encased in a silica cyst.
    Algae in the genus Dinobryon. They look like blobs with a lot of tails hanging off them.
  • Dinoflagellates - These single-celled algae have two flagella, one that circles their “waist” and one streaming off the side. They are more common in marine waters than freshwater, and can cause “red tides” which are harmful to fish.
    Dinoflagellate in the genus Peridinium. It is roundish with some grooves in it.

Further Reading

Categories: Underappreciated data
  • January 27, 2023

By Rosemary Hartman

Delta Smelt

Small fish with large eye, small pectoral fin, and adipose fin.
Picture of Delta Smelt, photo by Rene Reyes, US Bureau of Reclamation

Wakasagi

Small fish with short pectoral fin, adipose fin, and upright dorsal fin. Very similar to the Delta Smelt.
Picture of a Wakasagi, photo by Rene Reyes, US Bureau of Reclamation

You’ve probably heard of Delta Smelt (Hypomesus transpacificus), and you may have heard of their cousin, the Longfin Smelt (Spirinchus thaleichthys), but there is a third osmerid in the estuary. The Wakasagi (Hypomesus nipponensis), also known as Japanese Smelt, is in the same genus as Delta Smelt, and was once thought to be the same species. It is native to Japan, but was introduced to reservoirs in California by the California Department of Fish and Game in the 1950s, and now it is established throughout the watershed, including the Delta.

But what does this brother of the Delta Smelt do? Is there sibling rivalry? A group of IEP scientists was curious, so they decided to look at all of our existing data to see when, where, how big, and how many Wakasagi are in the Delta and how their environmental tolerances and diet compares to Delta Smelt. A paper about their analysis recently came out in the Journal San Francisco Estuary and Watershed Sciences.

In order to compare Delta Smelt and Wakasagi, they looked at all the data from thirty different fish datasets from San Francisco Bay, Suisun Marsh/Suisun Bay, the Delta, and the watershed (see map below). This resulted in a dataset with over 250,000 individual Wakasagi! They also looked at data from special studies of Wakasagi and Delta Smelt growth and diets in the Yolo Bypass.

Map of the San Francisco Estuary showing hundreds of sampling points in the San Francisco Bay and Delta with scattered points upstream.
Maps of the San Francisco Bay-Delta Estuary. (A) Four long-term CDFW monitoring surveys and region assignments used for the comparative Delta Smelt and Wakasagi analysis. (B) Sampling locations for a subset of additional surveys used to assess Wakasagi catch, as well as Yolo Bypass surveys used to assess life-history traits including growth, phenology, and diet. Map reproduced from Davis et al, 2022, with permission.

They found some similarities between delta smelt and Wakasagi – both fish really like hanging out in the Sacramento Deep Water Ship Channel and both like eating calanoid copepods (a particularly tasty variety of zooplankton). They spawn at about the same time, but Wakasagi are usually a little earlier (though this varies from year to year), and Wakasagi usually grow a little faster. They are similar enough that they sometimes interbreed and produce hybrid offspring.

Wakasagi aren’t the same as Delta Smelt though. Wakasagi aren’t actually very common in the Delta, instead finding their homes further upstream in reservoirs (they especially seem to like the Feather River, the screw trap there catches tens to hundreds of thousands of Wakasagi per year!). In the Delta they are mostly in the northern region, which might be just them washing in from upstream. Though they were mostly found in freshwater reaches of the Delta, Wakasagi can actually tolerate a wider range of salinity and temperatures than Delta Smelt, but they seem to prefer cooler temperatures.

So, are Wakasagi competing with Delta Smelt for limited food resources? Maybe a bit, but while they play a similar ecological role when they do overlap, they don’t overlap spatially very often, and both Delta Smelt and Wakasagi are rare in the Delta. However, they overlap enough that areas that are good for Wakasagi are probably good for Delta Smelt too. Delta Smelt are becoming more and more endangered, so we can use Wakasagi as indicators of good Delta Smelt conditions and as substitutes for smelt in some laboratory experiments.

Major similarities and differences between Delta Smelt and Wakasagi
Delta Smelt Wakasagi Comparison
Annual life span Annual life span Checkbox that indicates the items are similar
Spawn later Spawn earlier Two arrows pointing in opposite directions that indicate the items are different
Eat calanoid copepods Eat calanoid copepods Checkbox that indicates the two items are similar
Grow slower Grow faster Two arrows pointing in opposite directions which indicates the items are different
Narrower tolerances Wider tolerances Two arrows pointing in opposite directions which indicate the items are different
Endangered More common Two arrows pointing in opposite directions which indicate the items are different
Native Non native Two arrows pointing in opposite directions which indicate the items are different
Mostly semi-anadromous Mostly freshwater Two arrows pointing in opposite directions which indicate the items are different
Small and silver Small and silver Checkbox which indicate the items are similar
Loves the North Delta Loves the North Delta Checkbox which indicates the items are similar
Smells like cucumber Smells like fish Two arrows pointing in opposite directions which indicates the items are different

 

Further reading

Categories: General
  • October 11, 2022

By Rosemary Hartman

With help from Arthur Barros and all the zooplankton taxonomists of the Stockton CDFW lab.

Photos by Tricia Bippus (CDFW)

Zooplankton never get as much appreciation as fish (Hartman et al. 2021), but even among zooplankton there are clear favorites. Copepods and mysid shrimp have dozens of publications dedicated to them, but rotifers often get the short end of the stick. Most papers about “zooplankton” in the San Francisco estuary don’t even mention rotifers. However, the Environmental Monitoring Program works very hard monitoring microzooplankton (guys smaller than 150 microns) and the expert taxonomists at CDFW’s Stockton laboratory spend hours counting and identifying rotifers in those samples. Rotifers are an important link in the food chain connecting bacteria, phytoplankton, and particulate organic matter to fish. They are eaten by larger zooplankton and larval fish (Plabbmann et al. 1997, Burris et al. 2022).

What is a rotifer anyway?

Rotifers are one of the simplest multi-cellular animals on earth, sometimes called "wheel animals" because they have a ciliated structure on their head that looks a little like a wheel. They are tiny, usually only half a millimeter long, and they eat phytoplankton and bits of organic material floating in the water.

How are the samples collected? Well, it starts with the field crew going out to long-term monitoring stations throughout the Delta. The crew lowers a pump nearly to the bottom, then raises the pump up slowly, sucking in water and zooplankton as it goes. The water is then passed through a 43-micron mesh net until 75 L of water have been filtered. All the critters in the net are carefully preserved in formalin, with a little bit of pink dye added to make the critters stand out better. See Kayfetz et al. (2020) (PDF) and the Zooplankton EDI publication metadata (Barros 2021b) for more information.

Back in the laboratory, trained taxonomists subsample the critters and carefully identify and count them under a microscope. Rotifers are tricky to identify, so most are only identified to the genus level, or lumped into “other rotifers”. The rotifers we see most frequently are:

Synchaeta spp.

  • Swimming form: top-shaped with pointed foot and lateral auricles with bristles at the widest point, bristles around corona.
  • Contracted form: roundish to donut-shaped with corona, auricles and foot sucked in. Not much clear space, organs more prominent than in Asplanchna.

Microscopic photo of synchaeta in both swimming and contracted form.

Synchaeta bichornis

  • Pointed ‘foot’ at posterior end, two ‘horns’ at the anterior end.
  • Body usually curved into a shallow “C” shape.

Polyarthra spp.

  • Body squarish with feather-like appendages at the “corners”.
  • Appendages extend beyond length of the body.

Keratella spp.

  • 6 prominent ‘teeth’ or hooks on the anterior margin. Posterior end variable, with zero, one, or two spines.
  • Rigid lorica.

Microscopic image of Keratella (rotifer).

Trichocerca spp.

  • Mostly cylindrical, more or less curved, tapering at the anterior and posterior ends.
  • Toes asymmetrical: one prominently elongated, filament-like, often held up ventrally.

Microscopic image of Trichocerca (rotifer).

Asplanchna spp.

  • Like a clear bag with few organs inside, more clear space than Synchaeta.
  • No ‘foot’. Contracted form with corona sucked in at one end.

“Other rotifers”

  • Including Branchionus, Playais, colonial rotifers, Notholca, Filinia, and many more!

Microscopic image of Brachionus and an unidentified rotifer

So, what can we learn from the rotifer data?

Well, we can start by graphing the average rotifer catch at all stations since the zooplankton survey began (Figure 1). The first thing that jumps out at you is that the standard deviation is HUGE! Rotifers (like all zooplankton) are highly variable critters with big changes from station to station, month to month, and year to year. The next thing that probably jumps out at you is that abundances were a LOT higher prior to 1980. What could have driven that decline?

Area plot of rotifer catch per unit effort by year from 1975-2021. There is a drop in catch around 1980.
Figure 1. Average catch per unit effort (number of rotifers per thousand cubic meters) of all rotifers per sample (dark green area). Standard deviation of catch per year (light green area).

But that is the average catch for ALL the rotifers lumped together. It might be interesting to look at each taxon individually (Figure 2). Here we can see that all species declined after 1980, but the biggest drops were seen Keratella, Polyarthra, and Trichocerca. Synchaeta didn’t show quite as big a drop. We can also see that Synchaeta is usually the most common taxa, while Asplanchna is pretty rare. Lots of other researchers have noticed a big drop in copepods and chlorophyll after 1986 when the invasive clam Potamocorbula amurensis started to take over the area (Kimmerer et al. 1994, Kimmerer and Thompson 2014, Kimmerer and Lougee 2015), but no one has looked at the post-1980 rotifer crash!

Bar plot of rotifer catch per unit effort by year for each of the six major rotifer taxa.
Figure 2. Catch of major species of rotifers caught by EMP over time. You can see that the abundance of many species of rotifers declined sharply around 1980. You can also see that Synchaeta, Keratella, and Polyarthra were the most common species.

Since 1980, the biggest years for rotifers were 2017 and 2011, both of which were really wet years. Maybe rotifers like wetter years better? Let’s subset our data so we just have data from after 1980 and see how water year time affects rotifer catch (Figure 3). The pattern isn’t super clear – all taxa had high catches in 2017, but not all wet years had high catches, and some taxa (like Asplanchna) also had high catches during drier years. However, when we graph the average total rotifer catch versus the Sacramento Valley Index (a measure of water availability), we see a positive correlation between water flow and rotifer catch (Figure 4). Why might this be? Are they getting moved in from upstream? Or are they reproducing faster?

Bar plot showing rotifer catch per unit effort by year with bars labeled with different water year types.
Figure 3. Catch per unit effort of each rotifer taxa over time, with bars color-coded with water year type.
Scatter plot showing rotifer catch per unit effort versus the Sacramento Valley Water Year index with a positive correlation.
Figure 4. Plot of total rotifer catch per unit effort versus Sacramento Valley Water Year index with different shapes and colors indicating water year type. The line indicates a linear model showing an increase in rotifer abundance with increased flow.

Of course, there are lots of different ways to display the data. We can make area plots, bar plots, streamflow plots, pie charts, maps, or pie charts on top of maps (Figure 5)! Different types of graphs help you see the data in different ways and pull out different patterns.

Map of the estuary showing rotifer abundance in different regions with pie charts.
Figure 5. Map of mean rotifer CPUE from 2017, which was one of the biggest years for rotifers since the 1970s. Each pie chart represents one of EMP’s long-term monitoring stations, with the size of the pie chart corresponding to the total rotifer abundance. The South Delta and Suisun Marsh stations were especially high in rotifers, with more Synchaeta in the Marsh and more Polyarthra and other rotifers in the South Delta.

Are you interested in finding more patterns in the data?

You can visualize the data yourself on the ZoopSynth Shiny app (which also lets you download the data). However, before you dig in, be sure to read all of the metadata available on the Zooplankton EDI publication. You can also read some of the most recent Status and Trends reports published in the IEP newsletter for more ideas about useful patterns waiting for you to discover (Barros 2021a). Feel free to reach out if you have any questions or find any cool patterns! We love talking about zooplankton. Consider sharing your findings with the Zooplankton PWT too!

References and further reading

Categories: Underappreciated data
  • August 29, 2022
any small crabs running around on a tray

More underappreciated data!

This is the second blog in our series on underutilized datasets from IEP.

San Francisco Bay Study’s Crab Catch dataset

Curated by Kathy Hieb and Jillian Burns

The San Francisco Bay Study has been sampling with otter trawls and midwater trawls throughout the San Francisco Bay, Suisun Bay, and Delta since 1980. Their fish data have been used in a number of scientific studies, regulatory decisions, and journal articles. However, did you know they measure and count crabs in their nets too?

Bay Study’s stations are all categorized as “Shoal” (shallow areas) or “Channel” (deeper samples). Crabs are collected by otter trawl, which is towed along the bottom of the water, scraping up whatever demersal fishes and invertebrates it comes across. Truth be told, it’s not the best way to catch crabs, because most crabs like hiding under rocks where they are out of the way of the net, but it does give us a metric of status and trends of some of the most common species of crabs, including the Pacific rock crab (Cancer productus), the graceful rock crab (Cancer gracilis, also known as the slender rock crab), the red rock crab, and everyone’s favorite, the Dungeness crab (Metacarcinus magister).

After the net has been towed on the bottom for five minutes, it’s brought on board the boat and the biologists count, measure, and sex the crabs they’ve caught (Figure 1). This can be tricky, because crabs can be FAST! Especially the smaller Dungeness crabs (Figure 2). The biologists have to be careful and pick up the crabs by their back side to avoid getting pinched by their claws, which definitely takes practice.

a large crab is held by the back of its shell and is being measured with calipers
Figure 1. Each crab is carefully measured using calipers. This is where experienced biologists have to practice holding the crabs carefully to avoid being pinched. Image credit, Lynn Takata, Delta Science Program.
tray full of several dozen small crabs
Figure 2. Lots of little crabs! Juvenile crabs can be particularly hard to catch, and particularly hard to tell apart. Image credit: Kathy Hieb, CDFW.

Once all the crabs are counted and measured, they are entered into a database that goes back to 1980. Bay's Study's Dungeness crab data have been used to help manage the commercial crab fishery because fisheries-independent data is valuable. From 1975 to 1978, an estimated 38-82% of the Dungeness crabs in the central California region rear in the San Francisco Estuary each year (Wilde and Tasto 1983). This dataset was also very helpful in tracking the introduction, expansion, and decline of the Chinese mitten crab (Eriocheir sinensis), which briefly took over the brackish regions of the estuary but declined as rapidly as it arrived (Figure 3. Rudnick et al 2003). Bay Study's crab data has also been combined with other datasets to see how the estuarine community as a whole responds to climate patterns and human impacts (Cloern et al. 2010).

line graph showing annual average catch per trawl of five species of crabs caught by Bay Study in each region of the Estuary (South Bay, Central Bay, Suisun, and the West Delta) - click to enlarge in new window
Figure 3. Annual mean catch per trawl of the most common species of crabs across each region of the estuary. Dungeness crabs are the most frequently caught, with peaks in South Bay, Central Bay, and San Pablo in 2013 and 2016. Chinese mitten crabs had a spike in abundance in Suisun and the West Delta around 2002, but are rarely caught before or after. The red rock crab, graceful rock crab, and Pacific rock crab are only caught in South Bay, San Pablo, and Central Bay, and then only in low abundances. Click image to enlarge.

However, a lot of questions remain to be asked of this dataset. Why did we see such high catch of Dungeness crabs in 2013 and 2016? What are the drivers between the lesser-studied crabs, such as the graceful rock crab? How does the salinity preference of each species of crab differ (Figure 4)? If you want to investigate these questions yourself, data are available on the CDFW file library website. But be careful, the data have a few hiccups in them, such as changes to sampling sites over time, missing samples during period of boat break-downs, and other caveats. Be sure to read the metadata and make sure you understand the data before using them.

dot plot showing the salinity at which each species of crab is caught - click to enlarge in new window
Figure 4. Dot plot showing the salinity of each trawl where each species was found from 1995-2005. The Pacific rock crab, graceful rock crab, and red rock crab mostly occur at high salinity (25-32 PSU), but the Dungeness crab is often found in brackish water (10-32 PSU), and the Chinese Mitten crab was found in fresh to brackish water and mostly absent from high salinity water (anything greater than 28 PSU). Click image to enlarge.

Further reading

Categories: BlogDataScience, Underappreciated data